Part Number Hot Search : 
BU9728 K9F1208U 2SB1708 SN75110N AD2S83AP M12864 IRF7207 P6KE10A
Product Description
Full Text Search
 

To Download MJE4343 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2012 may, 2012 ? rev. 5 1 publication order number: MJE4343/d MJE4343 (npn), mje4353 (pnp) high-voltage - high power transistors . . . designed for use in high power audio amplifier applications and high voltage switching regulator circuits. features ? high collector ? emitter sustaining voltage ? npn pnp v ceo(sus) = 160 vdc ? MJE4343 mje4353 ? high dc current gain ? @ i c = 8.0 adc h fe = 35 (typ) ? low collector ? emitter saturation voltage ? v ce(sat) = 2.0 vdc (max) @ i c = 8.0 adc ? these are pb ? free devices maximum ratings rating symbol max unit collector ? emitter voltage v ceo 160 vdc collector ? base voltage v cb 160 vdc emitter ? base voltage v eb 7.0 vdc collector current ? continuous peak (note 1) i c 16 20 adc base current ? continuous i b 5.0 adc total power dissipation @ t c = 25 c p d 125 watts operating and storage junc- tion temperature range t j , t stg ? 65 to + 150 c thermal characteristics characteristic symbol max unit thermal resistance, junction to case r  jc 1.0 c/w 1. pulse test: pulse width  5.0  s, duty cycle  10%. sot ? 93 case 340d style 1 16 amps power transistors complementary silicon 160 volts http://onsemi.com 3 2 1 4 to ? 247 case 340l style 3 note: effective june 2012 this device will be available only in the to ? 247 package. reference fpcn# 16827. see detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. ordering information
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 2 marking diagrams mje43x3 aywwg 1 base 2 collector 3 emitter aywwg mje43x3 g mje43x3 = device code a = assembly location y = year ww = work week g=pb ? free package 1 base 2 collector 3 emitter to ? 247 sot ? 93 ordering information device order number package type shipping MJE4343g sot ? 93 (pb ? free) 30 units / rail mje4353g sot ? 93 (pb ? free) 30 units / rail MJE4343g to ? 247 (pb ? free) 30 units / rail mje4353g to ? 247 (pb ? free) 30 units / rail 3.5 0 figure 1. power derating reference: ambient temperature t a , ambient temperature ( c) 25 50 100 125 3.0 2.5 0.5 75 150 1.0 1.5 2.0 p d , power dissipation (watts)
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 3 ????????????????????????????????? ????????????????????????????????? (t c = 25 c unless otherwise noted) ?????????????????????? ?????????????????????? characteristic ????? ????? ??? ??? ???? ???? ??? ??? ????????????????????????????????? ????????????????????????????????? ?????????????????????? ?????????????????????? ?????????????????????? collector ? emitter sustaining voltage (note 2) (i c = 200 madc, i b = 0) ????? ????? ????? ??? ??? ??? ???? ???? ???? ? ??? ??? ??? vdc ?????????????????????? ?????????????????????? ? emitter cutoff current (v ce = 80 vdc, i b = 0) ????? ????? ??? ??? ? ???? ???? 750 ??? ???  adc ?????????????????????? ?????????????????????? ?????????????????????? ?????????????????????? ? emitter cutoff current (v ce = rated v cb , v eb(off) = 1.5 vdc) (v ce = rated v cb , v eb(off) = 1.5 vdc, t c = 150 c) ????? ????? ????? ????? ??? ??? ??? ??? ? ? ???? ???? ???? ???? 1.0 5.0 ??? ??? ??? ??? ?????????????????????? ?????????????????????? ? base cutoff current (v cb = rated v cb , i e = 0) ????? ????? ??? ??? ? ???? ???? 750 ??? ???  adc ?????????????????????? ?????????????????????? ?????????????????????? ? base cutoff current (v be = 7.0 vdc, i c = 0) ????? ????? ????? ??? ??? ??? ? ???? ???? ???? 1.0 ??? ??? ??? ????????????????????????????????? ????????????????????????????????? on characteristics (note 2) ?????????????????????? ?????????????????????? ?????????????????????? ?????????????????????? dc current gain (i c = 8.0 adc, v ce = 2.0 vdc) (i c = 16 adc, v ce = 4.0 vdc) ????? ????? ????? ????? ??? ??? ??? ??? ???? ???? ???? ???? ??? ??? ??? ??? ? ?????????????????????? ?????????????????????? ?????????????????????? collector ? emitter saturation voltage (i c = 8.0 adc, i b = 800 ma) (i c = 16 adc, i b = 2.0 adc) ????? ????? ????? ??? ??? ??? ? ? ???? ???? ???? 2.0 3.5 ??? ??? ??? ?????????????????????? ?????????????????????? ?????????????????????? ? emitter saturation voltage (i c = 16 adc, i b = 2.0 adc) ????? ????? ????? ??? ??? ??? ? ???? ???? ???? 3.9 ??? ??? ??? ?????????????????????? ?????????????????????? ? emitter on voltage (i c = 16 adc, v ce = 4.0 vdc) ????? ????? ??? ??? ? ???? ???? 3.9 ??? ??? ????????????????????????????????? ????????????????????????????????? dynamic characteristics ?????????????????????? ?????????????????????? ?????????????????????? current ? gain ? bandwidth product (note 3) (i c = 1.0 adc, v ce = 20 vdc, f test = 0.5 mhz) ????? ????? ????? ??? ??? ??? ???? ???? ???? ? ??? ??? ??? mhz ?????????????????????? ?????????????????????? ?????????????????????? ????? ????? ????? ??? ??? ??? ? ???? ???? ???? 800 ??? ??? ???  300  s, duty cycle  2.0%. 3. f t = ? h fe ?? f test .
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 4 t, time (s) figure 2. switching times test circuit +11 v 25  s 0 -9.0 v r b -4 v d 1 scope v cc +30 v r c t r , t f 10 ns duty cycle = 1.0% 51 r b and r c varied to obtain desired current levels d 1 must be fast recovery type, e.g.: 1n5825 used above i b 100 ma msd6100 used below i b 100 ma 3.0 i c , collector current (amp) t j = 25 c i c /i b = 10 v ce = 30 v 2.0 1.0 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.03 0.2 0.5 0.7 5.0 2.0 1.0 3.0 20 figure 3. typical turn ? on time 10 7.0 t r 0.3 note: reverse polarities to test pnp devices. t d @ v be(off) = 5.0 v 5.0 i c , collector current (amp) 0.5 3.0 2.0 1.0 figure 4. turn ? off time 0.7 0.2 0.5 0.7 5.0 2.0 0.3 1.0 3.0 20 10 7.0 t j = 25 c i c /i b = 10 i b1 = i b2 v ce = 30 v t s t f t, time (s) 2.0 0.2 i c , collector current (amp) 20 1.6 1.2 0.8 0.4 0 10 7.0 0.3 0.7 0.5 2.0 1.0 5.0 3.0 t j = 25 c v, voltage (volts) v be(sat) @ i c /i b = 10 v ce(sat) @ i c /i b = 10 v be @ v ce = 2.0 v figure 5. on voltages typical characteristics
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 5 v ce , collector-emitter voltage (volts) 1000 0.2 i c , collector current (amps) 20 100 50 20 10 10 0.5 2.0 1.0 5.0 v ce = 2 v figure 6. mje4340 series (npn) h fe , dc current gain t j = 150 c 25 c -55 c 1000 0.2 i c , collector current (amps) 20 100 10 10 0.5 2.0 1.0 5.0 figure 7. mje4350 series (pnp) h fe , dc current gain 2.0 0.05 i b , base current (amp) 5.0 1.2 0 3.0 0.1 0.3 0.2 0.5 figure 8. collector saturation region 1.6 0.8 0.4 0.07 0.7 1.0 2.0 t j = 25 c i c = 4.0 a 8.0 a 16 a v ce = 2 v t j = 150 c 25 c -55 c v ce = 2 v t j = 150 c 25 c -55 c dc current gain t, time (ms) 0.01 0.02 0.05 1.0 2.0 5.0 10 20 50 100 2000 0.1 0.5 0.2 1.0 0.2 0.1 0.05 r(t), effective transient thermal  jc (t) = r(t)  jc  jc = 1.0 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk)  jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.2 resistance (normalized) figure 9. thermal response 0.5 d = 0.5 0.05 0.02 200 500 1000 0.1 0.02 0.01 single pulse
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 6 100 v ce , collector-emitter voltage (volts) 0.1 200 50 1.0 figure 10. maximum forward bias safe operating area 5.0ms dc 20 150 30 20 10 7.0 5.0 3.0 i c , collector current (amp) 0.2 0.5 2.0 5.0 10 50 70 100 secondary breakdown limited thermal limit t c = 25 c bonding wire limited reverse bias for inductive loads, high voltage and high current must be sustained simultaneously during turn ? off, in most cases, with the base to emitter junction reverse biased. under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. this can be accomplished by several means such as active clamping, rc snubbing, load line shaping, etc. the safe level for these devices is specified as reverse bias safe operating area and represents the voltage ? current conditions during reverse biased turn ? off. this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 11 gives rbsoa characteristics. there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c ? v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 10 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 10 may be found at any case temperature by using the appropriate curve on figure 9. 20 v ce , collector-emitter voltage (volts) 8.0 figure 11. maximum reverse bias safe operating area 16 120 100 80 60 40 20 i c , collector current (amps) 4.0 12 140 160 180 t j = 100 c v be(off) 5 v
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 7 package dimensions sot ? 93 (to ? 218) case 340d ? 02 issue e style 1: pin 1. base 2. collector 3. emitter 4. collector a d v g k s l u b q 123 4 notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. e c j h dim min max min max inches millimeters a --- 20.35 --- 0.801 b 14.70 15.20 0.579 0.598 c 4.70 4.90 0.185 0.193 d 1.10 1.30 0.043 0.051 e 1.17 1.37 0.046 0.054 g 5.40 5.55 0.213 0.219 h 2.00 3.00 0.079 0.118 j 0.50 0.78 0.020 0.031 k 31.00 ref 1.220 ref l --- 16.20 --- 0.638 q 4.00 4.10 0.158 0.161 s 17.80 18.20 0.701 0.717 u 4.00 ref 0.157 ref v 1.75 ref 0.069 to ? 247 case 340l ? 02 issue f n p a k w f d g u e 0.25 (0.010) m yq s j h c 4 123 ? t ? ? b ? ? y ? notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. 2 pl 3 pl 0.63 (0.025) m tb m ? q ? l dim min max min max inches millimeters a 20.32 21.08 0.800 8.30 b 15.75 16.26 0.620 0.640 c 4.70 5.30 0.185 0.209 d 1.00 1.40 0.040 0.055 e 1.90 2.60 0.075 0.102 f 1.65 2.13 0.065 0.084 g 5.45 bsc 0.215 bsc h 1.50 2.49 0.059 0.098 j 0.40 0.80 0.016 0.031 k 19.81 20.83 0.780 0.820 l 5.40 6.20 0.212 0.244 n 4.32 5.49 0.170 0.216 p --- 4.50 --- 0.177 q 3.55 3.65 0.140 0.144 u 6.15 bsc 0.242 bsc w 2.87 3.12 0.113 0.123 style 3: pin 1. base 2. collector 3. emitter 4. collector
MJE4343 (npn), mje4353 (pnp) http://onsemi.com 8 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, af filiates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. publication ordering information n. american technical support : 800 ? 282 ? 9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5817 ? 1050 MJE4343/d literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 toll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of MJE4343

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X